Transverse Spin Structure/What is Orbital Angular Momentum?

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University & Jefferson Lab

Transverse Spin Structure/What is Orbital Angular Momentum?

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University & Jefferson Lab

Outline

Probabilistic interpretation of GPDs as Fourier trafos of impact parameter dependent PDFs

$$\tilde{H}(x,0,-\mathbf{\Delta}_{\perp}^2) \longrightarrow \Delta q(x,\mathbf{b}_{\perp})$$

Chromodynamik lensing and ⊥ SSAs

- Orbital angular momentum for an electron in QED
- Summary

Generalized Parton Distributions (GPDs)

■ GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction $x = \frac{1}{2}(x_i + x_f)$ of the active quark

$$\int dx H_q(x,\xi,t) = F_1^q(t) \qquad \int dx \tilde{H}_q(x,\xi,t) = G_A^q(t)$$

$$\int dx E_q(x,\xi,t) = F_2^q(t) \qquad \int dx \tilde{E}_q(x,\xi,t) = G_P^q(t),$$

- x_i and x_f are the momentum fractions of the quark before and after the momentum transfer
- $2\xi = x_f x_i$
- GPDs can be probed in deeply virtual Compton scattering (DVCS)

Generalized Parton Distributions (GPDs)

formal definition (unpol. quarks):

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H(x, \xi, \Delta^{2}) \bar{u}(p') \gamma^{+} u(p)$$

$$+ E(x, \xi, \Delta^{2}) \bar{u}(p') \frac{i\sigma^{+\nu} \Delta_{\nu}}{2M} u(p)$$

• in the limit of vanishing t and ξ , the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs:

$$H_q(x, 0, 0) = q(x)$$
 $\tilde{H}_q(x, 0, 0) = \Delta q(x).$

DVCS amplitude

$$\mathcal{A}(\xi,t) \sim \int_{-1}^{1} \frac{dx}{x - \xi + i\varepsilon} GPD(x,\xi,t)$$

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q}\gamma^+q$	Q	F(t)	$ ho(ec{r})$
$\int \frac{dx^- e^{ixp^+ x^-}}{4\pi} \bar{q}\left(\frac{-x^-}{2}\right) \gamma^+ q\left(\frac{x^-}{2}\right)$	q(x)	$H(x,\xi,t)$?

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$ar{q}\gamma^+q$	Q	F(t)	$ ho(ec{r})$
$\int \frac{dx^- e^{ixp^+ x^-}}{4\pi} \bar{q} \left(\frac{-x^-}{2}\right) \gamma^+ q \left(\frac{x^-}{2}\right)$	q(x)	H(x,0,t)	$q(x,\mathbf{b}_{\perp})$

 $q(x, \mathbf{b}_{\perp}) = \text{impact parameter dependent PDF}$

Impact parameter dependent PDFs

define \(\perp \) localized state [D.Soper,PRD15, 1141 (1977)]

$$|p^+, \mathbf{R}_\perp = \mathbf{0}_\perp, \lambda\rangle \equiv \mathcal{N} \int d^2 \mathbf{p}_\perp |p^+, \mathbf{p}_\perp, \lambda\rangle$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has

$$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int dx^{-} d^{2}\mathbf{x}_{\perp} \, \mathbf{x}_{\perp} T^{++}(x) = \sum_{i} x_{i} \mathbf{r}_{i,\perp} = \mathbf{0}_{\perp}$$

(cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

$$q(x, \mathbf{b}_{\perp}) \equiv \int \frac{dx}{4\pi} \langle p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} | \bar{q}(-\frac{x^-}{2}, \mathbf{b}_{\perp}) \gamma^+ q(\frac{x^-}{2}, \mathbf{b}_{\perp}) | p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \rangle e^{ixp^+x^-}$$

$$\begin{array}{ccc}
& q(x, \mathbf{b}_{\perp}) &= \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H(x, 0, -\mathbf{\Delta}_{\perp}^2), \\
& \Delta q(x, \mathbf{b}_{\perp}) &= \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}(x, 0, -\mathbf{\Delta}_{\perp}^2),
\end{array}$$

Impact parameter dependent PDFs

- No relativistic corrections (Galilean subgroup!)
- \hookrightarrow corrolary: interpretation of 2d-FT of $F_1(Q^2)$ as charge density in transverse plane also free from relativistic corrections
- $q(x, \mathbf{b}_{\perp})$ has probabilistic interpretation as number density $(\Delta q(x, \mathbf{b}_{\perp}))$ as difference of number densities)
- Peference point for IPDs is transverse center of (longitudinal) momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{i,\perp}$
- \hookrightarrow for $x \to 1$, active quark 'becomes' COM, and $q(x, \mathbf{b}_{\perp})$ must become very narrow (δ -function like)
- \hookrightarrow $H(x,0,-\Delta_{\perp}^2)$ must become Δ_{\perp} indep. as $x\to 1$ (MB, 2000)
- Note that this does not necessarily imply that 'hadron size' goes to zero as $x \to 1$, as separation \mathbf{r}_{\perp} between active quark and COM of spectators is related to impact parameter \mathbf{b}_{\perp} via $\mathbf{r}_{\perp} = \frac{1}{1-x}\mathbf{b}_{\perp}$.

x = momentum fraction of the quark

 $ec{b} = \perp$ position of the quark

Transversely Deformed Distributions and $E(x,0,-\Delta_{\perp}^2)$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

So far: only unpolarized (or long. pol.) nucleon! In general ($\xi = 0$):

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \langle P + \Delta, \uparrow | \bar{q}(0) \gamma^{+} q(x^{-}) | P, \uparrow \rangle = H(x, 0, -\boldsymbol{\Delta}_{\perp}^{2})$$

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \langle P + \Delta, \uparrow | \bar{q}(0) \gamma^{+} q(x^{-}) | P, \downarrow \rangle = -\frac{\Delta_{x} - i\Delta_{y}}{2M} E(x, 0, -\boldsymbol{\Delta}_{\perp}^{2}).$$

- Consider nucleon polarized in x direction (in IMF) $|X\rangle \equiv |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \uparrow\rangle + |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \downarrow\rangle.$
- → unpolarized quark distribution for this state:

$$q(x, \mathbf{b}_{\perp}) = \mathcal{H}(x, \mathbf{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} E(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

▶ Physics: $j^+ = j^0 + j^3$, and left-right asymmetry from j^3 ! [X.Ji, PRL **91**, 062001 (2003)]

Intuitive connection with $\vec{J_q}$

- **●** DIS probes quark momentum density in the infinite momentum frame (IMF). Quark density in IMF corresponds to $j^+ = j^0 + j^3$ component in rest frame (\vec{p}_{γ^*} in $-\hat{z}$ direction)
- \hookrightarrow j^+ larger than j^0 when quark current towards the γ^* ; suppressed when away from γ^*
- \hookrightarrow For quarks with positive orbital angular momentum in \hat{x} -direction, j^z is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side

- ullet Details of ot deformation described by $E_q(x,0,-oldsymbol{\Delta}_{oldsymbol{\perp}}^2)$
- \hookrightarrow not surprising that $E_q(x,0,-{\bf \Delta}_{\perp}^2)$ enters Ji relation!

$$\langle J_q^i \rangle = S^i \int dx \left[H_q(x,0,0) + E_q(x,0,0) \right] x.$$

Transversely Deformed PDFs and $E(x, 0, -\Delta^2_{\perp})$

- $\mathbf{p}(x, \mathbf{b}_{\perp})$ in \perp polarized nucleon is deformed compared to longitudinally polarized nucleons!
- ightharpoonup mean \perp deformation of flavor q (\perp flavor dipole moment)

$$d_y^q \equiv \int dx \int d^2 \mathbf{b}_{\perp} q_X(x, \mathbf{b}_{\perp}) b_y = \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q^p}{2M}$$

with
$$\kappa_{u/d}^p \equiv F_2^{u/d}(0) = \mathcal{O}(1-2) \quad \Rightarrow \quad d_y^q = \mathcal{O}(0.2fm)$$

• simple model: for simplicity, make ansatz where $E_q \propto H_q$

$$E_u(x, 0, -\boldsymbol{\Delta}_{\perp}^2) = \frac{\kappa_u^p}{2} H_u(x, 0, -\boldsymbol{\Delta}_{\perp}^2)$$

$$E_d(x, 0, -\boldsymbol{\Delta}_{\perp}^2) = \kappa_d^p H_d(x, 0, -\boldsymbol{\Delta}_{\perp}^2)$$

with
$$\kappa_u^p=2\kappa_p+\kappa_n=1.673$$

$$\kappa_d^p=2\kappa_n+\kappa_p=-2.033.$$

■ Model too simple but illustrates that anticipated deformation is very significant since κ_u and κ_d known to be large!

p polarized in $+\hat{x}$ direction

lattice results (Hägler et al.)

$GPD \longleftrightarrow SSA (Sivers)$

• example: $\gamma p \rightarrow \pi X$

- u,d distributions in \bot polarized proton have left-right asymmetry in \bot position space (T-even!); sign "determined" by κ_u & κ_d
- attractive FSI deflects active quark towards the center of momentum
- \hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$ -direction into momentum asymmetry that favors $-\hat{y}$ direction
- \hookrightarrow correlation between sign of κ_q^p and sign of SSA: $f_{1T}^{\perp q} \sim -\kappa_q^p$
- $f_{1T}^{\perp q}\sim -\kappa_q^p$ confirmed by Hermes data (also consistent with Compass deuteron data $f_{1T}^{\perp u}+f_{1T}^{\perp d}pprox 0$)

Quark-Gluon Correlations (Introduction)

- (longitudinally) polarized polarized DIS at leading twist —— 'polarized quark distribution' $g_1^q(x)=q^\uparrow(x)+\bar q^\uparrow(x)-q_\downarrow(x)-\bar q_\downarrow(x)$
- $\frac{1}{Q^2}$ -corrections to X-section involve 'higher-twist' distribution functions, such as $g_2(x)$
- $g_2(x)$ involves quark-gluon correlations and does not have a parton interpretation as difference between number densities

Quark-Gluon Correlations (Introduction)

• (chirally even) higher-twist PDF $g_2(x) = g_T(x) - g_1(x)$

$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle PS|\bar{\psi}(0)\gamma^{\mu}\gamma_5\psi(\lambda n)|_{Q^2}|PS\rangle
= 2\left[g_1(x,Q^2)p^{\mu}(S\cdot n) + g_T(x,Q^2)S_{\perp}^{\mu} + M^2g_3(x,Q^2)n^{\mu}(S\cdot n)\right]$$

• 'usually', contribution from g_2 to polarized DIS X-section kinematically suppressed by $\frac{1}{\nu}$ compared to contribution from g_1

$$\sigma_{TT} \propto g_1 - \frac{2Mx}{\nu}g_2$$

• for \perp polarized target, g_1 and g_2 contribute equally to σ_{LT}

$$\sigma_{LT} \propto g_T \equiv g_1 + g_2$$

- \hookrightarrow 'clean' separation between higher order corrections to leading twist (g_1) and higher twist effects (g_2)
- ullet what can one learn from g_2 ?

Quark-Gluon Correlations (QCD analysis)

• (chirally even) higher-twist PDF $g_2(x) = g_T(x) - g_1(x)$

$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle PS|\bar{\psi}(0)\gamma^{\mu}\gamma_5\psi(\lambda n)|_{Q^2}|PS\rangle
= 2\left[g_1(x,Q^2)p^{\mu}(S\cdot n) + g_T(x,Q^2)S_{\perp}^{\mu} + M^2g_3(x,Q^2)n^{\mu}(S\cdot n)\right]$$

- $g_2(x) = g_2^{WW}(x) + \bar{g}_2(x)$, with $g_2^{WW}(x) \equiv -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y)$
- $ar{g}_2(x)$ involves quark-gluon correlations, e.g.

$$\int dx x^2 \bar{g}_2(x) = \frac{1}{3} d_2 = \frac{1}{6MP^{+2}S^x} \langle P, S | \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) | P, S \rangle$$

- ullet matrix elements of $ar q B^x \gamma^+ q$ and $ar q E^y \gamma^+ q$ are sometimes called color-electric and magnetic polarizabilities

$$2M^2\vec{S}\chi_E = \left\langle P, S \left| \vec{j}_a \times \vec{E}_a \right| P, S \right\rangle \& 2M^2\vec{S}\chi_B = \left\langle P, S \left| j_a^0 \vec{B}_a \right| P, S \right\rangle$$
 with $d_2 = \frac{1}{4} \left(\chi_E + 2\chi_M \right)$ — but these names are misleading!

Quark-Gluon Correlations (Interpretation)

 $m{g}_2(x)$ involves quark-gluon correlations, e.g.

$$\int dx x^{2} \bar{g}_{2}(x) = \frac{1}{3} d_{2} = \frac{1}{6MP^{+2}S^{x}} \langle P, S | \bar{q}(0)gG^{+y}(0)\gamma^{+}q(0) | P, S \rangle$$

QED: $\bar{q}(0)eF^{+y}(0)\gamma^+q(0)$ correlator between quark density $\bar{q}\gamma^+q$ and $(\hat{y}$ -component of the) Lorentz-force

$$F^{y} = e\left[\vec{E} + \vec{v} \times \vec{B}\right]^{y} = e\left(E^{y} - B^{x}\right) = -e\left(F^{0y} + F^{zy}\right) = -e\sqrt{2}F^{+y}.$$

for charged paricle moving with $\vec{v} = (0, 0, -1)$ in the $-\hat{z}$ direction

- matrix element of $\bar{q}(0)eF^{+y}(0)\gamma^+q(0)$ yields γ^+ density (density relevant for DIS in Bj limit!) weighted with the Lorentz force that a charged particle with $\vec{v}=(0,0,-1)$ would experience at that point
- \hookrightarrow d_2 a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon

$$\langle F^y(0)\rangle = -M^2d_2$$
 (rest frame; $S^x = 1$)

Quark-Gluon Correlations (Interpretation)

Interpretation of d_2 with the transverse FSI force in DIS also consistent with $\langle k_\perp^y \rangle \equiv \int_0^1 dx \int \mathrm{d}^2k_\perp \, k_\perp^2 f_{1T}^\perp(x,k_\perp^2)$ in SIDIS (Qiu, Sterman)

$$\langle k_{\perp}^{y} \rangle = -\frac{1}{2p^{+}} \left\langle P, S \left| \bar{q}(0) \int_{0}^{\infty} dx^{-} g G^{+y}(x^{-}) \gamma^{+} q(0) \right| P, S \right\rangle$$

semi-classical interpretation: average k_{\perp} in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity

- ullet matrix element defining d_2 same as the integrand (for $x^-=0$) in the QS-integral:
 - $\langle k_{\perp}^y \rangle = \int_0^{\infty} dt F^y(t)$ (use $\mathrm{d}x^- = \sqrt{2} \mathrm{d}t$)
 - \hookrightarrow first integration point $\longrightarrow F^y(0)$

Quark-Gluon Correlations (Interpretation)

- \hookrightarrow different linear combination $f_2 = \chi_E \chi_B$ of χ_E and χ_M
- \hookrightarrow combine with data for $g_2 \Rightarrow$ disentangle electric and magnetic force
- - proton:

$$\chi_E = -0.082 \pm 0.016 \pm 0.071$$
 $\chi_B = 0.056 \pm 0.008 \pm 0.036$

neutron:

$$\chi_E = 0.031 \pm 0.005 \pm 0.028$$
 $\chi_B = 0.036 \pm 0.034 \pm 0.017$

but future higher- Q^2 data for d_2 may still change these results ...

Quark-Gluon Correlations (Estimates)

- What should one expect (magnitude)?
 - if all spectators were to pull in the same direction, force should be on the order of the QCD string tension $\sigma \approx (0.45 GeV)^2 \approx 0.2 GeV^2$
 - however, expect significant cancellation for FSI force, from spectators 'pulling' in different directions
 - expect FSI force to be suppressed compared to string tension by about one order of magnitude (more?)

$$\hookrightarrow |d_2| = \frac{|\langle F^y(0)\rangle|}{M^2} \sim 0.02$$

- What should one expect (sign)?
 - $\kappa_q^p \longrightarrow \text{signs of deformation } (u/d \text{ quarks in } \pm \hat{y} \text{ direction for proton polarized in } + \hat{x} \text{ direction } \longrightarrow \text{ expect force in } \mp \hat{y}$
 - \hookrightarrow d_2 positive/negative for u/d quarks in proton
 - d_2 negative/positive for u/d quarks in neutron
 - large N_C : $d_2^{u/p} = -d_2^{d/p}$
 - consistent with $f_{1T}^{\perp u} + f_{1T}^{\perp d} \approx 0$

Quark-Gluon Correlations (data/lattice)

- lattice (Göckeler et al.): $d_2^u \approx 0.010$ and $d_2^d \approx -0.0056$ (with large errors)
- \hookrightarrow using $M^2 \approx 5 rac{{
 m GeV}}{fm}$ this implies

$$\langle F_u^y(0)\rangle \approx -50 \frac{\text{MeV}}{fm}$$
 $\langle F_d^y(0)\rangle \approx 28 \frac{\text{MeV}}{fm}$

- signs consistent with impact parameter picture
- SLAC data ($5GeV^2$): $d_2^p = 0.007 \pm 0.004$, $d_2^n = 0.004 \pm 0.010$
- combined with SIDIS data for $\langle k^y \rangle$, should tell us about 'effective range' of FSI $R_{eff} \equiv \frac{\langle k^y \rangle}{F^y(0)}$ Anselmino et al.: $\langle k^y \rangle \sim \pm 100 \, \mathrm{MeV}$
- x^2 -moment of chirally odd twist-3 PDF e(x) → transverse force on transversly polarized quark in unpolarized target (\leftrightarrow Boer-Mulders h_1^{\perp})

Summary

- GPDs $\stackrel{FT}{\longleftrightarrow}$ IPDs (impact parameter dependent PDFs)
- \blacktriangleright $E(x,0,-\Delta_{\perp}^2)\longrightarrow \bot$ deformation of PDFs for \bot polarized target
- $\hookrightarrow \kappa^{q/p} \Rightarrow \text{sign of deformation}$
- \hookrightarrow attractive FSI $\Rightarrow f_{1T}^{\perp u} < 0 \& f_{1T}^{\perp d} > 0$
- Interpretation of $M^2d_2\equiv 3M^2\int dx x^2\bar{g}_2(x)$ as \perp force on active quark in DIS in the instant after being struck by the virtual photon

$$\langle F^y(0)\rangle = -M^2d_2$$
 (rest frame; $S^x = 1$)

- In combination with measurements of f_2
 - ullet color-electric/magnetic force ${M^2\over 4}\chi_E$ and ${M^2\over 2}\chi_M$
- $\kappa^{q/p} \Rightarrow \bot$ deformation $\Rightarrow d_2^{u/p} > 0$ & $d_2^{d/p} < 0$ (attractive FSI)
- ullet combine measurement of d_2 with that of f_{1T}^{\perp} \Rightarrow range of FSI
- x^2 -moment of chirally odd twist-3 PDF e(x) \longrightarrow transverse force on transversly polarized quark in unpolarized target $\otimes Boer Mulders here)$ tum? p.24/43

Summary

- ${\color{red} \blacktriangleright}$ distribution of \bot polarized quarks in unpol. target described by chirally odd GPD $\bar{E}_T^q=2\bar{H}_T^q+E_T^q$
- origin: correlation between orbital motion and spin of the quarks
- \hookrightarrow attractive FSI \Rightarrow measurement of h_1^\perp (DY,SIDIS) provides information on \bar{E}_T^q and hence on spin-orbit correlations
- expect:

$$|h_1^{\perp,q}| < 0$$
 $|h_1^{\perp,q}| > |f_{1T}^q|$

 $x^2 - moment of chirally odd twist-3 PDF <math>e(x) \longrightarrow transverse force on transversly polarized quark in unpolarized target (→ Boer-Mulders)$

What is Orbital Angular Momentum?

- Ji decomposition
- Jaffe decomposition
- recent lattice results (Ji decomposition)
- model/QED illustrations for Ji v. Jaffe

The nucleon spin pizza(s)

Ji

Jaffe & Manohar

'pizza tre stagioni'

'pizza quattro stagioni'

• only $\frac{1}{2}\Delta\Sigma \equiv \frac{1}{2}\sum_{q}\Delta q$ common to both decompositions!

Angular Momentum Operator

- angular momentum tensor $M^{\mu\nu\rho}=x^{\mu}T^{\nu\rho}-x^{\nu}T^{\mu\rho}$
- \hookrightarrow $\tilde{J}^i = \frac{1}{2} \varepsilon^{ijk} \int d^3r M^{jk0}$ conserved

$$\frac{d}{dt}\tilde{J}^i = \frac{1}{2}\varepsilon^{ijk} \int d^3x \partial_0 M^{jk0} = \frac{1}{2}\varepsilon^{ijk} \int d^3x \partial_l M^{jkl} = 0$$

- $M^{\mu\nu\rho}$ contains time derivatives (since $T^{\mu\nu}$ does)
 - use eq. of motion to get rid of these (as in T^{0i})
 - integrate total derivatives appearing in T^{0i} by parts
 - ullet yields terms where derivative acts on x^i which then 'disappears'
 - $\hookrightarrow J^i$ usally contains both
 - 'Extrinsic' terms, which have the structure ' $\vec{x} \times$ Operator', and can be identified with 'OAM'
 - 'Intrinsic' terms, where the factor $\vec{x} \times$ does not appear, and can be identified with 'spin'

 Transverse Spin Structure/What is Orbital Angular Momentum? p.28/43

Angular Momentum in QCD (Ji)

following this general procedure, one finds in QCD

$$\vec{J} = \int d^3x \, \left[\psi^{\dagger} \vec{\Sigma} \psi + \psi^{\dagger} \vec{x} \times \left(i \vec{\partial} - g \vec{A} \right) \psi + \vec{x} \times \left(\vec{E} \times \vec{B} \right) \right]$$

with
$$\Sigma^i = \frac{i}{2} \varepsilon^{ijk} \gamma^j \gamma^k$$

- Ji does <u>not</u> integrate gluon term by parts, <u>nor</u> identify gluon spin/OAM separately
- ullet Ji-decomposition valid for all three components of \vec{J} , but usually only applied to \hat{z} component, where the quark spin term has a partonic interpretation
- (+) all three terms manifestly gauge invariant
- (+) DVCS can be used to probe $ec{J}_q = ec{S}_q + ec{L}_q$
- (-) quark OAM contains interactions
- (-) only quark spin has partonic interpretation as a single particle density

Ji-decomposition

 J_g

Ji (1997)

$$\frac{1}{2} = \sum_{q} J_q + J_g = \sum_{q} \left(\frac{1}{2}\Delta q + \mathbf{L}_q\right) + J_g$$

with
$$(P^{\mu} = (M, 0, 0, 1), S^{\mu} = (0, 0, 0, 1))$$

$$\frac{1}{2}\Delta q = \frac{1}{2} \int d^3x \langle P, S | q^{\dagger}(\vec{x}) \Sigma^3 q(\vec{x}) | P, S \rangle \qquad \Sigma^3 = i\gamma^1 \gamma^2$$

$$L_q = \int d^3x \langle P, S | q^{\dagger}(\vec{x}) \left(\vec{x} \times i\vec{D} \right)^3 q(\vec{x}) | P, S \rangle$$

$$J_g = \int d^3x \langle P, S | \left[\vec{x} \times \left(\vec{E} \times \vec{B} \right) \right]^3 | P, S \rangle$$

Ji-decomposition

- $J_q = \frac{1}{2}\Delta q + L_q from exp/lattice (GPDs)$
- L_q in principle independently defined as matrix elements of $q^\dagger \left(\vec{r} \times i \vec{D} \right) q$, but in practice easier by subtraction $L_q = J_q \frac{1}{2} \Delta q$
- J_g in principle accessible through gluon GPDs, but in practice easier by subtraction $J_g = \frac{1}{2} J_q$
- further decomposition of J_g into intrinsic (spin) and extrinsic (OAM) that is local <u>and</u> manifestly gauge invariant has not been found

 L_q

 $\frac{1}{2}\Delta\Sigma$

L_q for proton from Ji-relation (lattice)

lattice QCD ⇒ moments of GPDs (LHPC; QCDSF)

contributions to nucleon spin

$$\langle J_q^i \rangle = S^i \int dx \left[H_q(x,0) + E_q(x,0) \right] x.$$

- $\hookrightarrow L_a^z = J_a^z \frac{1}{2}\Delta q$
- L_u , L_d both large!
- present calcs. show $L_u + L_d \approx 0$, but
 - disconnected diagrams ..?
 - m_{π}^2 extrapolation
 - parton interpret. of L_q ...

Angular Momentum in QCD (Jaffe & Manohar)

define OAM on a light-like hypesurface rather than a space-like hypersurface

$$\tilde{J}^3 = \int d^2x_{\perp} \int dx^- M^{12+}$$

where
$$x^- = \frac{1}{\sqrt{2}} \left(x^0 - x^- \right)$$
 and $M^{12+} = \frac{1}{\sqrt{2}} \left(M^{120} + M^{123} \right)$

• Since $\partial_{\mu}M^{12\mu}=0$

$$\int d^2 \mathbf{x}_{\perp} \int dx^- M^{12+} = \int d^2 \mathbf{x}_{\perp} \int dx^3 M^{120}$$

(compare electrodynamics: $\vec{\nabla} \cdot \vec{B} = 0 \implies \text{flux in = flux out}$)

• use eqs. of motion to get rid of 'time' (∂_+ derivatives) & integrate by parts whenever a total derivative appears in the T^{i+} part of M^{12+}

Jaffe/Manohar decomposition

in light-cone framework & light-cone gauge $A^+=0$ one finds for $J^z=\int dx^-d^2{\bf r}_\perp M^{+xy}$

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \sum_{q} \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$$

where
$$(\gamma^+ = \gamma^0 + \gamma^z)$$

$$\mathcal{L}_{q} = \int d^{3}r \langle P, S | \bar{q}(\vec{r}) \gamma^{+} \left(\vec{r} \times i \vec{\partial} \right)^{z} q(\vec{r}) | P, S \rangle$$

$$\Delta G = \varepsilon^{+-ij} \int d^{3}r \langle P, S | \operatorname{Tr} F^{+i} A^{j} | P, S \rangle$$

$$\mathcal{L}_{g} = 2 \int d^{3}r \langle P, S | \operatorname{Tr} F^{+j} \left(\vec{x} \times i \vec{\partial} \right)^{z} A^{j} | P, S \rangle$$

Jaffe/Manohar decomposition

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \sum_{q} \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$$

- $\Delta\Sigma = \sum_{q} \Delta q$ from polarized DIS (or lattice)
- Arr from $\overrightarrow{p} \overleftarrow{p}$ or polarized DIS (evolution)
- \hookrightarrow $\triangle G$ gauge invariant, but local operator only in light-cone gauge
- $\int dx x^n \Delta G(x)$ for $n \geq 1$ can be described by manifestly gauge inv. local op. (\longrightarrow lattice)
- \mathcal{L}_q , \mathcal{L}_g independently defined, but
 - no exp. identified to access them
 - not accessible on lattice, since nonlocal except when $A^+=0$
- ullet parton net OAM $\mathcal{L} = \mathcal{L}_g + \sum_q \mathcal{L}_q$ by subtr. $\mathcal{L} = \frac{1}{2} \frac{1}{2}\Delta\Sigma \Delta G$
- ullet in general, ${oldsymbol{\mathcal{L}}_q}
 eq {oldsymbol{L}_q}$ $\qquad {oldsymbol{\mathcal{L}}_g} + \Delta G
 eq J_g$
- ullet makes no sense to 'mix' Ji and JM decompositions, e.g. $J_g \Delta G$ has no fundamental connection to OAM

$L_q \neq \mathcal{L}_q$

 $ightharpoonup L_q$ matrix element of

$$q^{\dagger} \left[\vec{r} \times \left(i \vec{\partial} - g \vec{A} \right) \right]^z q = \bar{q} \gamma^0 \left[\vec{r} \times \left(i \vec{\partial} - g \vec{A} \right) \right]^z q$$

$$\bar{q}\gamma^{+}\left[\vec{r}\times i\vec{\partial}\right]^{z}q\Big|_{A^{+}=0}$$

- For nucleon at rest, matrix element of L_q same as that of $\bar{q}\gamma^+\left[\vec{r}\times\left(i\vec{\partial}-g\vec{A}\right)\right]^zq$
- even in light-cone gauge, L_q^z and \mathcal{L}_q^z still differ by matrix element of $q^\dagger \left(\vec{r} \times g \vec{A} \right)^z q \Big|_{A^+=0} = q^\dagger \left(x g A^y y g A^x \right) q \Big|_{A^+=0}$

Summary part 1:

- lacksquare Ji: $J^z=rac{1}{2}\Delta\Sigma+\sum_{m{q}}{m{L_q}}+J_g$
- **■** Jaffe: $J^z = \frac{1}{2}\Delta\Sigma + \sum_q \mathcal{L}_q + \Delta G + \mathcal{L}_g$
- $\triangle G$ can be defined without reference to gauge (and hence gauge invariantly) as the quantity that enters the evolution equations and/or $\overrightarrow{p} \ \overrightarrow{p}$
- represented by simple (i.e. local) operator only in LC gauge and corresponds to the operator that one would naturally identify with 'spin' only in that gauge
- in general $L_q \neq L_q$ or $J_g \neq \Delta G + L_g$, but
- ullet how significant is the difference between L_q and \mathcal{L}_q , etc. ?

OAM in scalar diquark model

[M.B. + Hikmat Budhathoki Chhetri (BC), PRD 79, 071501 (2009)]

- toy model for nucleon where nucleon (mass M) splits into quark (mass m) and scalar 'diquark' (mass λ)
- → light-cone wave function for quark-diquark Fock component

$$\psi_{+\frac{1}{2}}^{\uparrow}(x,\mathbf{k}_{\perp}) = \left(M + \frac{m}{x}\right)\phi \qquad \psi_{-\frac{1}{2}}^{\uparrow} = -\frac{k^{1} + ik^{2}}{x}\phi$$

with
$$\phi=rac{c/\sqrt{1-x}}{M^2-rac{\mathbf{k}_{\perp}^2+m^2}{x}-rac{\mathbf{k}_{\perp}^2+\lambda^2}{1-x}}$$
 .

- quark OAM according to JM: $\mathcal{L}_q = \int_0^1 dx \int \frac{d^2 \mathbf{k}_\perp}{16\pi^3} (1-x) \left| \psi_{-\frac{1}{2}}^{\uparrow} \right|^2$
- (using Lorentz inv. regularization, such as Pauli Villars subtraction) both give identical result, i.e. $L_q = \mathcal{L}_q$
- not surprising since scalar diquark model is not a gauge theory

OAM in scalar diquark model

Description But, even though $L_q = \mathcal{L}_q$ in this non-gauge theory

$$\mathcal{L}_{q}(x) \equiv \int \frac{d^{2}\mathbf{k}_{\perp}}{16\pi^{3}} (1-x) \left| \psi_{-\frac{1}{2}}^{\uparrow} \right|^{2} \neq \frac{1}{2} \left\{ x \left[q(x) + E(x,0,0) \right] - \Delta q(x) \right\} \equiv L_{q}(x)$$

'unintegrated Ji-relation' does <u>not</u> yield x-distribution of OAM

OAM in QED

Ight-cone wave function in $e\gamma$ Fock component

$$\Psi_{+\frac{1}{2}+1}^{\uparrow}(x, \mathbf{k}_{\perp}) = \sqrt{2} \frac{k^{1} - ik^{2}}{x(1-x)} \phi \qquad \qquad \Psi_{+\frac{1}{2}-1}^{\uparrow}(x, \mathbf{k}_{\perp}) = -\sqrt{2} \frac{k^{1} + ik^{2}}{1-x} \Psi_{-\frac{1}{2}+1}^{\uparrow}(x, \mathbf{k}_{\perp}) = 0$$

$$\Psi_{-\frac{1}{2}+1}^{\uparrow}(x, \mathbf{k}_{\perp}) = \sqrt{2} \left(\frac{m}{x} - m \right) \phi \qquad \qquad \Psi_{-\frac{1}{2}+1}^{\uparrow}(x, \mathbf{k}_{\perp}) = 0$$

ullet OAM of e^- according to Jaffe/Manohar

$$\mathcal{L}_e = \int_0^1 dx \int d^2 \mathbf{k}_\perp \left[(1 - x) \left| \Psi_{+\frac{1}{2} - 1}^\uparrow(x, \mathbf{k}_\perp) \right|^2 - \left| \Psi_{+\frac{1}{2} + 1}^\uparrow(x, \mathbf{k}_\perp) \right|^2 \right]$$

- ullet e^- OAM according to Ji $L_e=rac{1}{2}\int_0^1 dx\,x\,[q(x)+E(x,0,0)]-rac{1}{2}\Delta q$
- \sim $\mathcal{L}_e = L_e + \frac{\alpha}{4\pi} \neq L_e$
- Likewise, computing J_{γ} from photon GPD, and $\Delta\gamma$ and \mathcal{L}_{γ} from light-cone wave functions and <u>defining</u> $\hat{L}_{\gamma} \equiv J_{\gamma} \Delta\gamma$ yields $\hat{L}_{\gamma} = \mathcal{L}_{\gamma} + \frac{\alpha}{4\pi} \neq \mathcal{L}_{\gamma}$
- riangle appears to be small, but here \mathcal{L}_e , L_e are all of $\mathcal{O}(\frac{\alpha}{2})$ is Orbital Angular Momentum? p.40/43

OAM in QCD

- \hookrightarrow 1-loop QCD: $\mathcal{L}_q L_q = \frac{\alpha_s}{3\pi}$
- **●** recall (lattice QCD): $L_u \approx -.15$; $L_d \approx +.15$
- ullet QCD evolution yields negative correction to L_u and positive correction to L_d
- evolution suggested (A.W.Thomas) to explain apparent discrepancy between quark models (low Q^2) and lattice results $(Q^2 \sim 4 GeV^2)$
- lacksquare above result suggests that $\mathcal{L}_u > L_u$ and $\mathcal{L}_d > L_d$
- additional contribution (with same sign) from vector potential due to spectators (MB, to be published)
- \hookrightarrow possible that lattice result consistent with $\mathcal{L}_u > \mathcal{L}_d$

- inclusive $\overrightarrow{e} \ \overrightarrow{p} / \overrightarrow{p} \ \overrightarrow{p}$ provide access to
 - quark spin $\frac{1}{2}\Delta q$
 - ullet gluon spin ΔG
 - ullet parton grand total OAM $\mathcal{L} \equiv \mathcal{L}_g + \sum_q \mathcal{L}_q = \frac{1}{2} \Delta G \sum_q \Delta q$
- DVCS & polarized DIS and/or lattice provide access to
 - quark spin $\frac{1}{2}\Delta q$
 - J_q & $L_q = J_q \frac{1}{2}\Delta q$
 - $J_g = \frac{1}{2} \sum_q J_q$
- $m{J}_g \Delta G$ does <u>not</u> yield gluon OAM \mathcal{L}_g
- $L_q \mathcal{L}_q = \mathcal{O}(0.1 * \alpha_s)$ for O (α_s) dressed quark

Announcement:

- workshop on Orbital Angular Momentum of Partons in Hadrons
- ECT* 9-13 November 2009
- organizers: M.B. & Gunar Schnell
- confirmed participants: M.Anselmino, H.Avakian, A.Bacchetta, L.Bland, D.Boer, S.J.Brodsky, M.Diehl, D.Fields, L.Gamberg, G.Goldstein, M.Grosse-Perdekamp, P.Hägler, X.Ji, R.Kaiser, E.Leader, N.Makins, A.Miller, D.Müller, P.Mulders, A.Schäfer, G.Schierholz, O.Teryaev, W.Vogelsang, F.Yuan